Портал аналитической химии

Методики, рекомендации, справочники

Симметрия молекул и молекулярная спектроскопия - 0089
Он-лайн библиотека - Симметрия молекул и молекулярная спектроскопия



< Назад 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 Вперед >

ОГЛАВЛЕНИЕ

Макет страницы

 

 

т. е. [по (5.118)], если

Тт Ф Yn. (5.134)

Может случиться, что Н'тп равно нулю, хотя Т'тп гэ r<s), но это может произойти случайно.

Диагонализация матрицы гамильтониана

Рассмотрим вековое уравнение (5.123) более детально и продемонстрируем важность правила отбора. Собственные функции Wn и собственные значения En оператора Гамильтона #° в (5.121) определяются из уравнения

H0Wn = EnVl (5.135)

Собственные функции, соответствующие различным собственным значениям, должны быть ортогональны друг другу. Выберем вырожденные собственные функции так, чтобы они были взаимно-ортогональны, и предположим, что все функции нормированы. В этих условиях можно образовать матрицу гамильтониана H0, используя собственные функции W0, причем матричные элементы задаются выражением

Н°тп = \ Wm*H°Wn dx = 6тпЕ°п, (5.136)

где dx — элемент объема.

Матрица H0 диагональна в собственных функциях W0 оператора Я0, и диагональные элементы являются собственными значениями Я0.

Предположим, что функции W0, введенные выше, не являются собственными функциями оператора Гамильтона Й = Я0 - j-+ Я'. Тогда

HW^eWn, (5.137)

где е — константа, но

Я (Z C111Wn} = E1 (Z CinWany (5.138)

где ^-функции образуют полный набор базисных функций. Необходимо решить систему дифференциальных уравнений (5.138) для всех Е/, чтобы получить собственные значения E1-и собственные функции

Wi=ZC1nWl (5.139)

п

гамильтониана Я. Умножив (5.138) слева на Wm" и интегрируя по конфигурационному пространству, получим

£ CinHmn = E1 £ C1n \ W°m*Wn dx = Ej £ СщЬтп, (5.140)

 

Сейчас на сайте

Сейчас 158 гостей онлайн

Методы исследования

Определяемые объекты

Аналитическая химия

На заметку

You are here: